

A152649


Decimal expansion of Pi^4/72.


12



1, 3, 5, 2, 9, 0, 4, 0, 4, 2, 1, 3, 8, 9, 2, 2, 7, 3, 9, 3, 9, 5, 0, 0, 4, 6, 2, 0, 6, 7, 6, 4, 5, 9, 8, 7, 8, 4, 6, 8, 4, 3, 8, 6, 8, 9, 8, 9, 8, 4, 0, 8, 6, 3, 4, 6, 0, 3, 7, 2, 0, 2, 6, 9, 3, 0, 5, 1, 5, 0, 7, 7, 0, 2, 3, 3, 7, 1, 1, 0, 5, 8, 1, 9, 6, 1, 3, 7, 0, 4, 4, 9, 2, 7, 1, 2, 4, 8, 9, 6, 5, 4, 1, 2, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

A division by 2 is missing in Mezo's penultimate formula on page 4.


LINKS

Muniru A Asiru, Table of n, a(n) for n = 1..2000
David Borwein and J. M. Borwein, On an intriguing integral and some series related to zeta(4), Proc. Am. Math. Soc. 123 (1995) 11911198.
I. Gradsteyn and I. Ryzhik, Table of integrals, series and products, Academic Press, (1980), page 7 (formulas from 0.233.3 to 0.233.5).
Istvan Mezo, Summation of Hyperharmonic Numbers, arXiv:0811.0042 [math.CO], 2008.
Index entries for transcendental numbers


FORMULA

Equals A098198/2 = A092425/72.
Equals Sum_{j >= 1} H(j)/j^3 where H(j)=A001008(j)/A002805(j).
Equals 20*Sum_{j >= 1} (2*j)^4 (see Gradsteyn and Ryzhik in Links section).  A.H.M. Smeets, Sep 18 2018


EXAMPLE

Equals 1.352904042138922739395004620676459878468438689898408634603...


MAPLE

evalf(Pi^4/72, 120); # Muniru A Asiru, Sep 18 2018


MATHEMATICA

RealDigits[Pi^4/72, 10, 120][[1]] (* Harvey P. Dale, Feb 10 2013 *)


PROG

(PARI) Pi^4/72 \\ Michel Marcus, Jul 07 2015


CROSSREFS

Sequence in context: A026143 A340510 A075626 * A327263 A186412 A322982
Adjacent sequences: A152646 A152647 A152648 * A152650 A152651 A152652


KEYWORD

cons,easy,nonn


AUTHOR

R. J. Mathar, Dec 10 2008


STATUS

approved



